Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

John C. Barnes

Division of Physical and Inorganic Chemistry, School of Life Sciences, Carnelley Building, University of Dundee, Dundee DD1 4HN, Scotland

Correspondence e-mail:
j.c.barnes@dundee.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.052$
$w R$ factor $=0.145$
Data-to-parameter ratio $=13.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetrasodium tetrahydrofuran-trans-cis-transtetracarboxylate pentahydrate

Abstract

In $\mathrm{Na}_{4}\left[\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}(\mathrm{COO})_{4}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (or $\left.4 \mathrm{Na}^{+} \cdot \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{9}{ }^{4-} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)$, the anions are connected by hydrogen bonds to water molecules to form bilayers of open columns. Three of the sodium ions are located inside these columns. The final sodium ion interconnects the bilayers of anions. Three of the sodium ions have distorted octahedral coordination, the other has a trigonal pyramidal environment. The ligands are O atoms belonging to water, carboxylate groups or, in one case, the furan ring. The $\mathrm{Na}-\mathrm{O}$ distances are between 2.303 (2) and 2.596 (3) \AA.

Comment

There are relatively few published structures of tri- or tetracarboxylic acids or their salts. We have reported studies of hydrogen bonding in derivatives of tricarballylic acid, β methyltricarballylic acid and 1,2,3,4-butanetetracarboxylic acid (Barnes \& Barnes, 1996) and a range of salts of tetrahydrofuran trans-cis-trans-tetracarboxylic acid, (I), in which one (Barnes \& Paton, 1982, 1984), two (Barnes \& Paton, 1984, Barnes, 1997), three (Barnes, 1997) or all four carboxylate groups (Barnes \& Paton, 1984) are deprotonated.

(I)
(I) Free acid
(II) Sodium salt, $\mathrm{Na}_{4} \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}(\mathrm{COO})_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

As with many polycarboxylic acids, a particular cation will only form crystals of a few (usually one) of its possible salts with (I). These must represent particularly low energy combinations of hydrogen bonding and packing. With sodium ions, the crystals proved to be $\mathrm{Na}_{4}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}(\mathrm{COO})_{4}\right) \cdot 5 \mathrm{H}_{2} \mathrm{O}$, (II), whereas the crystalline caesium salt is the anhydrous $\mathrm{Cs}\left[\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}(\mathrm{COOH})_{3}(\mathrm{COO})\right]$ (Barnes \& Paton, 1984).

In the isolated (4-) anion derived from (I), the carboxylate groups are able to twist relative to the tetrahydrofuran ring with little steric hindrance. Thus, the conformation in crystalline salts is determined by hydrogen bonding to water or to cations such as NH_{4}^{+}and electrostatic interactions with cations. Partially protonated anions can, in addition, form intramolecular or inter-anion hydrogen bonds (Barnes, 1997).

In (II), Fig. 1 and the torsion angles in Table 1 show that the anion is far from the possible ideal mirror symmetry. Each of

Received 13 June 2002
Accepted 24 June 2002 Online 29 June 2002

Figure 1

The structure of the anion in (II), showing 50% probability displacement ellipsoids.
the carboxylate O atoms, except for O16, takes part in hydrogen bonding to water molecules (Table 2). Atom O16 and furan atom O1 have short contacts only to sodium.

Fig. 2 shows that the structure can be visualized as bilayers of anions parallel to $b c$, separated by layers of Na 3 ions close to $x=0$ and $x=0.5$. Anions are joined into pairs in the a direction by hydrogen bonds to pairs of water molecules O25 centred at $x=0.25$ and $z=0.25$. The outer edges of these anion pairs (at about $x=0.06,0.44$) are connected to adjacent pairs in the c direction by water molecules $\mathrm{O} 22, \mathrm{O} 23$ and O 24 to complete the bilayer of open columnar cells which enclose $\mathrm{Na} 1, \mathrm{Na} 2$ and Na 4 (Fig. 3). The water molecule O21 connects anions in the b direction.
$\mathrm{Na} 1, \mathrm{Na} 2$ and Na 3 each have six O -atom neighbours (assortments of carboxylate O atoms and water molecules and, for Na1, the furan atom O1) at distances between 2.303 (2) and 2.596 (3) \AA. There is no correlation between the environment of the O atom and the $\mathrm{Na}-\mathrm{O}$ distance. Table 1 and Fig. 3 show that these coordination environments are very irregular octahedra. Na4 has only five O-atom neighbours, at similar distances, which form a distorted trigonal pyramid.

The water molecules $\mathrm{O} 21, \mathrm{O} 22, \mathrm{O} 24$ and O 25 coordinate to two Na atoms and act as H -atom donors in two hydrogen bonds (Table 2). Atom O23 acts as a ligand to Na 3 only, as $\mathrm{H}-$ atom donor in hydrogen bonds to O 10 and $\mathrm{O}^{\prime}(x, 2-y$, $z-0.5)$, and as H -atom acceptor from $\mathrm{H} 22 A^{\prime}(x, 1+y, z)$.

Experimental

An aqueous solution of (I) was neutralized by adding four equivalents of aqueous sodium hydroxide. The solution was allowed to crystallize in air and the resulting crystalline mass recrystallized from water. The same product was obtained from other ratios of (I) to NaOH .

Crystal data

$4 \mathrm{Na}^{+} \cdot \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{9}{ }^{4-} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=426.15$
Monoclinic, $C 2 / c$
$a=30.1575(13) \AA$
$b=6.3341(3) \AA$
$c=15.9844(9) \AA$
$\beta=96.772(2)^{\circ}$
$V=3032.0(3) \AA^{3}$
$Z=8$

[^0]

Figure 2
The unit cell of (II), viewed down the b axis, showing anions and water molecules only.

Data collection

Enraf-Nonius KappaCCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SORTAV; Blessing, 1995)
$T_{\text {min }}=0.940, T_{\text {max }}=0.976$
12544 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.145$
$S=1.02$
3594 reflections
265 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 3
Stereopair of half the unit cell, in the same orientation as Fig. 2. This shows the environment of the sodium ions. At the centre of the diagram, Na 2 is seen in two positions related by the screw axis at $1 / 4, y, 1 / 2$. Na1 and Na 4 are close to the (vertical) line $z=1 / 2$ at $x=0.16$ and 0.11 , respectively. Four symmetry-related Na 3 atoms can be seen at the bottom of the diagram, close to the horizontal line $x=0$. Hydrogen bonds have been omitted for clarity.

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Na1-O25	2.305 (2)	$\mathrm{Na} 3-\mathrm{O} 7^{\text {i }}$	2.295 (2)
$\mathrm{Na} 1-\mathrm{O} 8^{\text {i }}$	2.342 (2)	$\mathrm{Na} 3-\mathrm{O} 24{ }^{\text {iii }}$	2.365 (2)
Na1-O11	2.357 (2)	$\mathrm{Na} 3-\mathrm{O} 22^{\text {vi }}$	2.397 (2)
$\mathrm{Na} 1-\mathrm{O} 1^{\mathrm{i}}$	2.463 (2)	$\mathrm{Na} 3-\mathrm{O} 10^{\text {i }}$	2.409 (2)
Na1-O14	2.551 (2)	$\mathrm{Na} 3-\mathrm{O} 24^{\text {vi }}$	2.429 (2)
$\mathrm{Na} 1-\mathrm{O} 16^{\text {i }}$	2.588 (2)	$\mathrm{Na} 3-\mathrm{O} 23^{\text {vi }}$	2.480 (2)
$\mathrm{Na} 2-\mathrm{O} 14^{\text {ii }}$	2.391 (2)	$\mathrm{Na} 4-\mathrm{O} 8^{\text {i }}$	2.303 (2)
Na2-O14	2.426 (2)	$\mathrm{Na} 4-\mathrm{O} 11{ }^{\text {vii }}$	2.326 (2)
$\mathrm{Na} 2-\mathrm{O} 16^{\text {iii }}$	2.447 (2)	Na4-O13	2.332 (2)
$\mathrm{Na} 2-\mathrm{O} 21^{\text {iv }}$	2.481 (2)	Na4-O22	2.378 (2)
Na2-O21 ${ }^{\text {v }}$	2.503 (2)	Na4-O16 ${ }^{\text {iii }}$	2.483 (2)
Na2-O25	2.596 (3)		
$\mathrm{O} 25-\mathrm{Na} 1-\mathrm{O} 8^{\text {i }}$	97.89 (8)	$\mathrm{O} 24{ }^{\text {iii }}-\mathrm{Na} 3-\mathrm{O} 10^{\text {i }}$	93.92 (8)
$\mathrm{O} 25-\mathrm{Na} 1-\mathrm{O} 11$	152.77 (9)	$\mathrm{O} 22^{\text {vi }}-\mathrm{Na} 3-\mathrm{O} 10^{\text {i }}$	177.68 (8)
$\mathrm{O} 8{ }^{\mathrm{i}}-\mathrm{Na} 1-\mathrm{O} 11$	104.02 (7)	$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Na} 3-\mathrm{O} 24^{\text {vi }}$	174.60 (8)
$\mathrm{O} 25-\mathrm{Na} 1-\mathrm{O} 1^{\text {i }}$	102.63 (8)	$\mathrm{O} 244^{\text {iii }}-\mathrm{Na} 3-\mathrm{O} 24^{\text {vi }}$	85.48 (8)
$\mathrm{O} 8^{\mathrm{i}}-\mathrm{Na} 1-\mathrm{O} 1^{\text {i }}$	65.78 (7)	$\mathrm{O} 22^{\text {vi }}-\mathrm{Na} 3-\mathrm{O} 24^{\text {vi }}$	93.02 (8)
$\mathrm{O} 11-\mathrm{Na} 1-\mathrm{O} 1^{\text {i }}$	101.02 (7)	$\mathrm{O} 10^{\mathrm{i}}-\mathrm{Na} 3-\mathrm{O} 24^{\text {vi }}$	88.90 (8)
$\mathrm{O} 25-\mathrm{Na} 1-\mathrm{O} 14$	80.96 (8)	$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Na} 3-\mathrm{O} 23^{\text {vi }}$	99.97 (8)
$\mathrm{O} 8{ }^{\mathrm{i}}-\mathrm{Na} 1-\mathrm{O} 14$	104.47 (7)	$\mathrm{O} 24^{\text {iii }}-\mathrm{Na} 3-\mathrm{O} 23^{\text {vi }}$	166.82 (9)
O11-Na1-O14	78.07 (7)	$\mathrm{O} 22^{\text {vi }}-\mathrm{Na} 3-\mathrm{O} 23^{\text {vi }}$	96.34 (8)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Na} 1-\mathrm{O} 14$	169.85 (8)	$\mathrm{O} 10^{\mathrm{i}}-\mathrm{Na} 3-\mathrm{O} 23^{\text {vi }}$	85.23 (7)
$\mathrm{O} 25-\mathrm{Na} 1-\mathrm{O} 16^{\mathrm{i}}$	95.85 (8)	$\mathrm{O} 24{ }^{\text {vi }}-\mathrm{Na} 3-\mathrm{O} 23{ }^{\text {vi }}$	81.36 (8)
$\mathrm{O} 8^{\mathrm{i}}-\mathrm{Na} 1-\mathrm{O} 16^{\mathrm{i}}$	128.01 (8)	$\mathrm{O} 8^{\mathrm{i}}-\mathrm{Na} 4-\mathrm{O} 11^{\text {vii }}$	172.00 (8)
$\mathrm{O} 11-\mathrm{Na} 1-\mathrm{O} 16^{\mathrm{i}}$	83.33 (7)	$\mathrm{O} 8{ }^{\mathrm{i}}-\mathrm{Na} 4-\mathrm{O} 13$	88.15 (7)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Na} 1-\mathrm{O} 16^{\mathrm{i}}$	62.32 (6)	$\mathrm{O} 11{ }^{\text {vii }}-\mathrm{Na} 4-\mathrm{O} 13$	87.19 (8)
$\mathrm{O} 14-\mathrm{Na} 1-\mathrm{O} 16^{\mathrm{i}}$	127.16 (7)	$\mathrm{O} 8^{\mathrm{i}}-\mathrm{Na} 4-\mathrm{O} 22$	81.02 (8)
$\mathrm{O} 14^{\mathrm{ii}}-\mathrm{Na} 2-\mathrm{O} 14$	89.28 (7)	$\mathrm{O} 11{ }^{\text {vii }}-\mathrm{Na} 4-\mathrm{O} 22$	106.93 (8)
$\mathrm{O} 14^{\mathrm{ii}}-\mathrm{Na} 2-\mathrm{O} 16^{\text {iii }}$	150.92 (7)	$\mathrm{O} 13-\mathrm{Na} 4-\mathrm{O} 22$	118.62 (8)
$\mathrm{O} 14-\mathrm{Na} 2-\mathrm{O} 16^{\text {iii }}$	107.94 (7)	$\mathrm{O} 8^{\mathrm{i}}-\mathrm{Na} 4-\mathrm{O} 16^{\text {iii }}$	89.47 (7)
$\mathrm{O} 14^{\mathrm{ii}}-\mathrm{Na} 2-\mathrm{O} 21^{\text {iv }}$	112.17 (8)	$\mathrm{O} 11{ }^{\text {vii }}-\mathrm{Na} 4-\mathrm{O} 16^{\text {iii }}$	86.32 (7)
$\mathrm{O} 14-\mathrm{Na} 2-\mathrm{O} 21^{\text {iv }}$	83.25 (7)	$\mathrm{O} 13-\mathrm{Na} 4-\mathrm{O} 16^{\text {iii }}$	112.66 (7)
$\mathrm{O} 16^{\text {iii }}-\mathrm{Na} 2-\mathrm{O} 21^{\text {iv }}$	93.41 (7)	$\mathrm{O} 22-\mathrm{Na} 4-\mathrm{O} 16^{\text {iii }}$	127.30 (8)
$\mathrm{O} 14^{\mathrm{ii}}-\mathrm{Na} 2-\mathrm{O} 21^{\mathrm{v}}$	84.27 (7)	$\mathrm{Na} 4{ }^{\text {viii }}-\mathrm{O} 8-\mathrm{Na} 1^{\text {viii }}$	105.73 (8)
$\mathrm{O} 14-\mathrm{Na} 2-\mathrm{O} 21^{v}$	152.37 (8)	$\mathrm{Na} 4{ }^{\text {ix }}-\mathrm{O} 11-\mathrm{Na} 1$	91.74 (7)
$\mathrm{O} 16^{\mathrm{iii}}-\mathrm{Na} 2-\mathrm{O} 21^{\mathrm{v}}$	89.81 (7)	$\mathrm{Na} 2{ }^{\text {ii }}-\mathrm{O} 14-\mathrm{Na} 2$	90.72 (7)
$\mathrm{O} 21{ }^{\text {iv }}-\mathrm{Na} 2-\mathrm{O} 21^{\text {v }}$	74.50 (8)	$\mathrm{Na} 2{ }^{\text {ii }}-\mathrm{O} 14-\mathrm{Na} 1$	103.17 (7)
$\mathrm{O} 14{ }^{\text {iii }}-\mathrm{Na} 2-\mathrm{O} 25$	83.31 (7)	Na2-O14-Na1	95.62 (7)
$\mathrm{O} 14-\mathrm{Na} 2-\mathrm{O} 25$	77.85 (7)	$\mathrm{Na} 22^{\text {iv }}-\mathrm{O} 16-\mathrm{Na} 4^{\text {iv }}$	97.15 (7)
$\mathrm{O} 16^{\mathrm{iii}}-\mathrm{Na} 2-\mathrm{O} 25$	77.91 (7)	$\mathrm{Na} 2{ }^{\text {iv }}-\mathrm{O} 16-\mathrm{Na} 1^{\text {viii }}$	110.00 (8)
$\mathrm{O} 21^{\text {iv }}-\mathrm{Na} 2-\mathrm{O} 25$	155.47 (8)	$\mathrm{Na} 4^{\text {iv }}-\mathrm{O} 16-\mathrm{Na} 1^{\text {viii }}$	83.03 (6)
$\mathrm{O} 21{ }^{\mathrm{v}}-\mathrm{Na} 2-\mathrm{O} 25$	127.66 (7)	$\mathrm{Na} 2{ }^{\text {iii }}-\mathrm{O} 21-\mathrm{Na} 2^{\mathrm{x}}$	105.50 (8)
$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Na} 3-\mathrm{O} 24^{\text {iii }}$	93.08 (8)	$\mathrm{Na} 4-\mathrm{O} 22-\mathrm{Na} 3^{\text {vi }}$	111.48 (9)
$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Na} 3-\mathrm{O} 22^{\text {vi }}$	92.03 (8)	$\mathrm{Na} 3{ }^{\text {iv }}-\mathrm{O} 24-\mathrm{Na} 3{ }^{\text {vi }}$	94.52 (8)
$\mathrm{O} 24{ }^{\text {iii }}-\mathrm{Na} 3-\mathrm{O} 22^{\text {vi }}$	84.94 (8)	$\mathrm{Na} 1-\mathrm{O} 25-\mathrm{Na} 2$	97.47 (8)
$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Na} 3-\mathrm{O} 10^{\mathrm{i}}$	86.01 (7)		
O1-C2-C3-C4	20.1 (3)	C12-C4-C5-C15	92.5 (3)
C2-C3-C4-C5	3.0 (3)	O7-C6-C2-C3	73.7 (3)
C3-C4-C5-O1	-25.2 (3)	O17-C15-C5-C4	-60.1 (3)
C4-C5-O1-C2	39.7 (3)	O10-C9-C3-C2	1.3 (3)
C6-C2-C3-C9	-94.3 (3)	O13-C12-C4-C5	45.4 (3)
C9-C3-C4-C12	-1.5 (3)		

Symmetry codes: (i) $x, 2-y, z-\frac{1}{2}$; (ii) $\frac{1}{2}-x, \frac{3}{2}-y, 1-z$; (iii) $x, 1-y, z-\frac{1}{2}$; (iv) $x, 1-y, \frac{1}{2}+z$; (v) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (vi) $-x, y, \frac{1}{2}-z$; (vii) $x, y-1, z$; (viii) $x, 2-y, \frac{1}{2}+z$; (ix) $x, 1+y, z ;$ (x) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 21-\mathrm{H} 21 A \cdots \mathrm{O} 11^{\mathrm{i}}$	0.87 (3)	1.94 (3)	2.805 (3)	176 (3)
$\mathrm{O} 21-\mathrm{H} 21 B \cdots \mathrm{O} 17^{\text {ii }}$	0.79 (3)	2.16 (3)	2.943 (3)	169 (3)
$\mathrm{O} 22-\mathrm{H} 22 A \cdots \mathrm{O} 23^{\text {iii }}$	0.83 (3)	2.08 (3)	2.845 (3)	154 (3)
$\mathrm{O} 22-\mathrm{H} 22 \mathrm{~B} \cdots \mathrm{O} 7^{\mathrm{i}}$	0.82 (3)	1.96 (3)	2.730 (3)	157 (3)
$\mathrm{O} 23-\mathrm{H} 23 A \cdots \mathrm{O} 10$	0.96 (4)	1.74 (4)	2.702 (3)	174 (3)
$\mathrm{O} 23-\mathrm{H} 23 \mathrm{~B} \cdots \mathrm{O}^{\mathrm{i}}$	0.68 (3)	2.28 (4)	2.948 (3)	169 (4)
$\mathrm{O} 24-\mathrm{H} 24 A \cdots \mathrm{O} 10$	0.78 (3)	2.36 (3)	3.010 (3)	142 (3)
$\mathrm{O} 24-\mathrm{H} 24 B \cdots \mathrm{O} 13$	0.81 (3)	1.93 (3)	2.740 (3)	176 (3)
$\mathrm{O} 25-\mathrm{H} 25 A \cdots \mathrm{O}^{\text {iv }}$	0.67 (3)	2.15 (3)	2.817 (3)	171 (4)
$\mathrm{O} 25-\mathrm{H} 25 B \cdots \mathrm{O} 17^{\text {ii }}$	0.88 (4)	1.82 (4)	2.699 (3)	175 (3)

H atoms attached to $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$ and C 4 were placed in calculated positions and allowed to ride on their attached C atom during refinement. Isotropic displacement parameters were constrained to be 1.3 times the $U_{\text {eq }}$ value of the C atom. Water H atoms ($\mathrm{O} 21-\mathrm{O} 25$) were located on a difference synthesis. Their positional parameters were refined without constraint and their isotropic displacement parameters were fixed at $0.025 \AA^{2}$.

Data collection: DENZO (Otwinowski \& Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: $D E N Z O$ and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

The author thanks the EPSRC and Professor M. B. Hursthouse for data collected at the University of Southampton.

References

Barnes, J. C. \& Paton, J. D. (1982). Acta Cryst. B38, 1588-1591. Barnes, J. C. \& Paton, J. D. (1984). Acta Cryst. C40, 1809-1812. Barnes, H. A. \& Barnes, J. C. (1996). Acta Cryst. C52, 731-736. Barnes, J. C. (1997). J. Chem. Soc. Pakistan, 19, 179-186. Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1999). PLATON. University of Utrecht, The Netherlands.

[^0]: $D_{x}=1.867 \mathrm{Mg} \mathrm{m}^{-3}$
 Mo $K \alpha$ radiation
 Cell parameters from 10138 reflections
 $\theta=2.9-33.7^{\circ}$
 $\mu=0.27 \mathrm{~mm}^{-1}$
 $T=150(2) \mathrm{K}$
 Plate, colourless
 $0.10 \times 0.05 \times 0.02 \mathrm{~mm}$

